Adenosine 5'-triphosphate, Coenzyme

Catalog	Unit
TBP0094-1G	1 g
TBP0094-5G	5 g

Product Details

Form: Crystalline powder
Molecular Weight: 605.1
Solubility: Distilled water or dilute buffer
Stability: Store at $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$

Unit Definition

1. 0.1 M Triethanolamine buffer/substrate, $\mathrm{pH} 7.6: 1.86 \mathrm{~g} \mathrm{TEA}{ }_{6} \mathrm{HCl}, 210 \mathrm{mg}$ glycerate- $3-\mathrm{P}, 125 \mathrm{mg} \mathrm{MgSO} 4 \mathrm{i}$ 7 7 H 2 O and 50 mg EDTA with 80 ml distilled water. Adjust pH to 7.6 with $1 \mathrm{M} \mathrm{NaOH}-\mathrm{Na} 2$ and adjust volume to 100 ml with distilled water.
2. 14 mM NADH: 10 mg NADH-Na2 with 1 ml distilled water.
3. Glyceraldehyde-3-phosphate dehydrogenase, from rabbit muscle: 10 mg protein $/ \mathrm{ml}(80 \mathrm{U} / \mathrm{mg})$.
4. 3-Phosphoglycerate kinase, from yeast: 10 mg protein $/ \mathrm{ml}(450 \mathrm{U} / \mathrm{mg})$.

Applications

Adenosine 5^{\prime}-triphosphate (ATP) is used in the assay of various ATP dependant enzymes (e.g. hexokinase, phosphoglycerate kinase, acetate kinase) and in the enzymatic determination of many metabolites (e.g. glucose, fructose, mannose, maltose, surcose, triglycerides, creatinine, etc.) ATP is also a component of special pharmaceuticals.

Procedure

1. Dissolve 25 mg ATP in 50 ml distilled water in a volumetric flask.
2. Set spectrophotometer (equipped with strip chart recorder and temperature control) at 340 nm and $25^{\circ} \mathrm{C}$. 3. Into a cuvette, pipette the following:

BLANK SAMPLE
Buffer/subst. (1) $\quad 2.90 \mathrm{ml} 2.90 \mathrm{ml}$
NADH (2) 0.05 ml 0.05 ml
sample -- 0.10 ml
distilled $\mathrm{H} 2 \mathrm{O} \quad 0.10 \mathrm{ml}$--
Mix and read absorbance A_{1}. 4. To both blank and sample add:
GAP-DH (3) 0.02 ml 0.02 ml
PGK (4) 0.02 ml 0.02 ml
Mix and read the absorbance A_{2} when the reaction is complete.

Calculation

$\Delta \mathrm{A}=(\mathrm{A} 1-\mathrm{A} 2$) sample - (A1 - A2)blank
Total Vol. $=3.09 \mathrm{ml}$
$605.2=$ MW of Adenosine
Concentration of ATP $=\frac{(3.09)(0.507)}{(0.63)(1)} \times \Delta \mathrm{A}(\mathrm{mg} / \mathrm{ml}$ sample solution $)$
5'-diphosphate
Sample Vol. $=0.10 \mathrm{ml}$ Concentration of ATP- $\mathrm{Na}_{2} \mathrm{H}_{2} \bullet 3 \mathrm{H}_{2} \mathrm{O}=\frac{(3.09)(0.605)}{(0.63)} \times \Delta A$ ($\mathrm{mg} / \mathrm{ml}$ sample solution)

$$
\% \mathrm{ADP}=\frac{\text { concentration of AMP }}{\text { concentration of sample }} \times 100
$$

For research use only

