

Adenosine 5'-monophosphate, Coenzyme

Catalog	Unit
TBP0093-5G	5 g
TBP0093-25G	25 g

Product Details

<u>Form:</u> Crystalline powder <u>Molecular Weight:</u> 391.19

Solubility: Distilled water or dilute buffer

Stability: Store at -20° C (-4° F)

Unit Definition

1. Triethanolamine buffer, 0.1M, pH 7.6: 1.86 g TEA• HCl in 80 ml distilled water. Adjust to pH 7.6 with 1.0 M NaOH, adjust volume to 100 ml with distilled water.

- 2. 14mM NADH:10 mg NADH-Na2 with 1 ml distilled water.
- 3. 16.5 mM ATP: 10 mg NADH-Na2 in 1 ml distilled water.
- 4. 0.5 M MgSO4/2 M KCl: 1.23 g MgSO4• 7 H2O and 1.49 g KCl in 10 ml distilled water.
- 5. 32 mM Phosphoenolpyruvate: 15 mg PEP-(CHA)3 in 1 ml MgSO4/KCl.
- 6. LDH, from rabbit muscle: 5 mg protein/ml (550 U/mg).
- 7. Pyruvate kinase, from rabbit muscle: 10 mg protein/ml (200 U/mg).
- 8. Myokinase, from rabbit muscle: 5 mg protein/ml (360 U/mg).

Applications

Adenosine 5'-monophosphate (AMP) is used in the determination of creatine kinase and 5'-nucleotidase.

Procedure

- 1. Dissolve 50 mg AMP in 50 ml distilled water in a volumetric flask.
- 2. Set spectrophotometer (equipped with strip chart recorder and temperature control) at 340 nm and 25° C.
- 3. Into two cuvettes, pipette the following:

		BLANK SAMPLI
Buffer	(1)	3.00 ml 3.00 ml
NADH	(2)	0.05 ml 0.05 ml
ATP	(3)	0.01 ml 0.01 ml
PEP	(5)	0.15 ml 0.15 ml
LDH	(6)	0.01 ml 0.10 ml
PK	(7)	0.02 ml 0.02 ml
Distilled H	20	0.05 ml
Sample		0.05 ml

Mix and read the absorbance A_1 .

4. Start the reaction by adding 0.01 ml myokinase (8) to both the blank and sample. Read the absorbance A2.

Calculation

 $\Delta A = (A1 - A2)$ sample - (A1 - A2) blank

Total Vol. = 3.04 ml 449.2 = MW of Adenosine

Concentration of AMP = $\frac{(3.30) (0.4992)}{(0.63) (1)}$ X \triangle A (mg/ml sample solution)

5'-diphosphate

Sample Vol. = 0.10 ml % ADP = $\frac{\text{concentration of AMP}}{\text{concentration of sample}}$ X100

For research use only

Tribioscience, Inc.; 365 San Aleso Ave, Sunnyvale, CA 94085 Phone: 408-498-0197

info@tribioscience.com; www.tribiosciences.com